Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36009444

RESUMO

Titanium dental implants have common clinical applications due to their biocompatibility, biophysical and biochemical characteristics. Although current titanium is thought to be safe and beneficial for patients, there are several indications that it may release toxic metal ions or metal nanoparticles from its alloys into the surrounding environment, which could lead to clinically relevant complications including toxic reactions as well as immune dysfunctions. Hence, an adequate selection and testing of medical biomaterial with outstanding properties are warranted. This study was designed to explore the biocompatibility of smooth titanium-niobium alloy (S_TiNb) versus smooth titanium commercially pure (S_TiCp)-a reference in implantology. All experiments were performed in vitro using human osteoblast-like SaOs-2 and monocyte THP-1 cell lines as models. Cell adhesion and growth morphology were determined by scanning electron microscopy, while cell viability was evaluated using WST-1 assay. Because niobate anions or niobium nanoparticles can be released from implants during biomaterial-cell interaction, potential immunotoxicity of potassium niobate (KNbO3) salt was evaluated by examining both metabolic activity and transcriptomic profiling of treated THP-1 monocytes. The main findings of this study are that S_TiCp and S_TiNb discs do not show an impact on the proliferation and viability of SaOs-2 cells compared to polystyrene surfaces, whereas a significant decrease in THP-1 cells' viability and metabolic activity was observed in the presence of S_TiNb discs compared to the control group. However, no significant changes were found neither at the metabolic activity nor at the transcriptomic level of THP-1 monocytes exposed to KNbO3 salt, suggesting that niobium has no effect on the immune system. Overall, these data imply a possible toxicity of S_TiNb discs toward THP-1 cells, which may not be directly related to niobium but perhaps to the manufacturing process of titanium-niobium alloy. Thus, this limitation must be overcome to make titanium alloy an excellent material for medical applications.

2.
Materials (Basel) ; 15(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806779

RESUMO

The osseointegration of implants is defined as the direct anatomical and functional connection between neoformed living bone and the surface of a supporting implant. The biological compatibility of implants depends on various parameters, such as the nature of the material, chemical composition, surface topography, chemistry and loading, surface treatment, and physical and mechanical properties. In this context, the objective of this study is to evaluate the biocompatibility of rough (Ra = 1 µm) and smooth (Ra = 0 µm) surface conditions of yttria-zirconia (Y-TZP) discs compared to pure zirconia (ZrO2) discs by combining a classical toxicological test, morphological observations by SEM, and a transcriptomic analysis on an in vitro model of human Saos-2 bone cells. Similar cell proliferation rates were observed between ZrO2 and Y-TZP discs and control cells, regardless of the surface topography, at up to 96 h of exposure. Dense cell matting was similarly observed on the surfaces of both materials. Interestingly, only 110 transcripts were differentially expressed across the human transcriptome, consistent with the excellent biocompatibility of Y-TZP reported in the literature. These deregulated transcripts are mainly involved in two pathways, the first being related to "mineral uptake" and the second being the "immune response". These observations suggest that Y-TZP is an interesting candidate for application in implantology.

3.
Cell Mol Biol (Noisy-le-grand) ; 67(2): 56-65, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34817338

RESUMO

The study presented here aimed to assess the ability of Desulfovibrio fairfieldensis bacteria to adhere to and form biofilm on the structure of titanium used in implants. D. fairfieldensis was found in the periodontal pockets in the oral environment, indicating that these bacteria can colonize the implant-bone interface and consequently cause bone infection and implant corrosion. Plates of implantable titanium, of which surfaces were characterized by scanning electronic microscopy and Raman spectroscopy, were immersed in several suspensions of D. fairfieldensis cells containing potassium nitrate on the one hand, and artificial saliva or a sulfato-reducing bacterial culture medium on the other hand. Following various incubation timepoints bacteria were counted in different media to determine their doubling time and titanium samples are checked for and determination of the total number of adhered bacteria and biofilm formation. Adhesion of D. fairfieldensis on titanium occurs at rates ranging from 2.105 to 4.6.106 bacteria h-1cm-2 in the first 18 h of incubation on both native and implantable titanium samples. Following that time, the increase in cell numbers per h and cm2 is attributed to growth in adhered bacteria. After 30 days of incubation in a nutrient-rich medium, dense biofilms are observed forming on the implant surface where bacteria became embedded in a layer of polymers D. fairfieldensis is able of adhering to an implantable titanium surface in order to form a biofilm. Further studies are still necessary, however, to assess whether this adhesion still occurs in an environment containing saliva or serum proteins that may alter the implant surface.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Implantes Dentários/microbiologia , Desulfovibrio/fisiologia , Titânio/química , Desulfovibrio/classificação , Desulfovibrio/genética , Desulfovibrio desulfuricans/fisiologia , Desulfovibrio desulfuricans/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura , Filogenia , Projetos Piloto , Porphyromonas/fisiologia , Porphyromonas/ultraestrutura , RNA Ribossômico 16S/genética
4.
Nanomaterials (Basel) ; 11(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206090

RESUMO

Although aging is associated with a higher risk of developing respiratory pathologies, very few studies have assessed the impact of age on the adverse effects of inhaled nanoparticles. Using conventional and transcriptomic approaches, this study aimed to compare in young (12-13-week-old) and elderly (19-month-old) fisher F344 rats the pulmonary toxicity of an inhaled nanostructured aerosol of titanium dioxide (TiO2). Animals were nose-only exposed to this aerosol at a concentration of 10 mg/m3 for 6 h per day, 5 days per week for 4 weeks. Tissues were collected immediately (D0), and 28 days after exposure (D28). A pulmonary influx of neutrophilic granulocytes was observed in exposed rats at D0, but diminished with time while remaining significant until D28. Similarly, an increased expression of several genes involved in inflammation at the two post-exposure time-points was seen. Apart from an age-specific pulmonary influx of lymphocyte, only slight differences in physio-pathological responses following TiO2 exposure between young and elderly animals were noticed. Conversely, marked age-related differences in gene expression profiles were observed making possible to establish lists of genes specific to each age group and post-exposure times. These results highlight different signaling pathways that were disrupted in rats according to their age.

5.
Cell Mol Biol (Noisy-le-grand) ; 66(6): 112-116, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33040795

RESUMO

nvestigations on adverse biological effects of nanoparticles (NP) are performed usually either in vivo on rodents or in vitro under submerged conditions where NP are in suspension into cell culture media. However, sedimentation of NP in vitro is a continuous process and to assess the exact deposited cellular dose remains difficult, as the cellular internal dose is a function of time. Moreover, the cellular responses to NP under submerged culture conditions or by exposing rodents by nose-only to NP aerosols might differ from those observed at physiological settings at the air-liquid interface (ALI). Rat alveolar NR8383 macrophages were exposed to aerosols at the air-liquid interface. We studied TiO2 NM105, a mixture of anatase and rutile. NR8383 cells were exposed to a single dose of 3.0 cm2/cm2 of TiO2 aerosol. Following RNA extraction, transcriptome allowing full coverage of the rat genome was performed, and differentially expressed genes were retrieved. Their products were analyzed for functions and interaction with String DB. Only 126 genes were differentially expressed and 98 were recognized by String DB and give us the gene expression signature of exposed rat alveolar NR8383 macrophages. Among them, 13 display relationships at a high confidence level and the ten most differentially expressed compared to unexposed cells were: Chac1, Ccl4, Zfp668, Fam129b, Nab2, Txnip, Id1, Cdc42ep3, Dusp6 and Myc, ranked from the most overexpressed to the most under-expressed. Some of them were previously described as over or under-expressed in NP exposed cell systems. We validated in our laboratory an easy-to-use device and a physiological relevant paradigm for studying the effects of cell exposure to TiO2. Ccl4 gene expression seems to be a positive marker of exposure evidenced as well as in vivo or in both in vitro conditions.


Assuntos
Nanopartículas/toxicidade , Titânio/toxicidade , Aerossóis/toxicidade , Animais , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Ratos , Suspensões/toxicidade , Transcriptoma/efeitos dos fármacos
6.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659965

RESUMO

There are many studies concerning titanium dioxide (TiO2) nanoparticles (NP) toxicity. Nevertheless, there are few publications comparing in vitro and in vivo exposure, and even less comparing air-liquid interface exposure (ALI) with other in vitro and in vivo exposures. The identification and validation of common markers under different exposure conditions are relevant for the development of smart and quick nanotoxicity tests. In this work, cell viability was assessed in vitro by WST-1 and LDH assays after the exposure of NR8383 cells to TiO2 NP sample. To evaluate in vitro gene expression profile, NR8383 cells were exposed to TiO2 NP during 4 h at 3 cm2 of TiO2 NP/cm2 of cells or 19 µg/mL, in two settings-submerged cultures and ALI. For the in vivo study, Fischer 344 rats were exposed by inhalation to a nanostructured aerosol at a concentration of 10 mg/m3, 6 h/day, 5 days/week for 4 weeks. This was followed immediately by gene expression analysis. The results showed a low cytotoxic potential of TiO2 NP on NR8383 cells. Despite the absence of toxicity at the doses studied, the different exposures to TiO2 NP induce 18 common differentially expressed genes (DEG) which are involved in mitosis regulation, cell proliferation and apoptosis and inflammation transport of membrane proteins. Among these genes, we noticed the upregulation of Ccl4, Osm, Ccl7 and Bcl3 genes which could be suggested as early response biomarkers after exposure to TiO2 NP. On the other hand, the comparison of the three models helped us to validate the alternative ones, namely submerged and ALI approaches.


Assuntos
Nanopartículas/toxicidade , Titânio/toxicidade , Administração por Inalação , Aerossóis/toxicidade , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inflamação , Masculino , Proteínas de Membrana/metabolismo , Mitose/efeitos dos fármacos , Nanoestruturas/toxicidade , Ratos , Ratos Endogâmicos F344 , Transcriptoma/efeitos dos fármacos
7.
J Proteomics ; 207: 103451, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31323425

RESUMO

The pulmonary toxicological properties of inhaled titanium dioxide were studied using bronchoalveolar lavage fluid (BALF) cytology and proteomics analyses. Fischer 344 rats were exposed to 10 mg/m3 of TiO2 nanostructured aerosol by nose-only inhalation for 6 h/day, 5 days/week for 4 weeks. Lung samples were collected up to 180 post-exposure days. As previously described, cytological analyses of BALF showed a strong inflammatory response up to 3 post-exposure days, which persisted however, at a lower intensity up to 180 days. In addition, using Multidimensional Protein Identification Technology (MudPIT), we identified a total of 107, 50 and 45 proteins (UniprotKB identifiers) differentially expressed in exposed rats immediately, 3 and 180 days after the end of exposure respectively. Increased levels of inflammatory proteins, members of proteasome, various histones, proteins involved in cytoskeleton organization, were noticed up to 3 days (short-term response). Some of these proteins were linked with Neutrophil Extracellular Trap formation (NETosis). Long-term response was also characterized by a persistent altered expression of proteins up to 180 days. Altogether, these results suggest that exposure to low toxicity low solubility nanomaterials such as TiO2 may induce long-term changes in the pulmonary protein expression pattern of which the physio-pathological consequences are unknown. SIGNIFICANCE: This paper describes in rats, at the pulmonary level, the effects of inhaled nanostructured aerosol of TiO2 on the secreted proteins found in the broncho-alveolar space by comparing the proteomic profile in broncho-alveolar lavage fluid supernatants of control and exposed animals. This work brings new insights about the early events occurring following the end of exposure and suggests the formation of Neutrophil Extracellular Traps (NETosis) that could be interpret as a potential early mechanism of defense against TiO2 nanoparticles. This work also describes the long term effects (180 post-exposure days) of such an exposure and the change in secreted protein expression in the absence of significant histopathological modifications.


Assuntos
Lavagem Broncoalveolar , Exposição por Inalação/efeitos adversos , Pulmão/metabolismo , Nanopartículas/efeitos adversos , Proteômica , Titânio/toxicidade , Aerossóis , Animais , Pulmão/patologia , Masculino , Ratos , Ratos Endogâmicos F344
8.
Toxicol Appl Pharmacol ; 375: 17-31, 2019 07 15.
Artigo em Espanhol | MEDLINE | ID: mdl-31075343

RESUMO

Multi-walled carbon nanotubes (MWCNTs), which vary in length, diameter, functionalization and specific surface area, are used in diverse industrial processes. Since these nanomaterials have a high aspect ratio and are biopersistant in the lung, there is a need for a rapid identification of their potential health hazard. We assessed in Sprague-Dawley rats the pulmonary toxicity of two pristine MWCNTs (the "long and thick" NM-401 and the "short and thin" NM-403) following either intratracheal instillation or 4-week inhalation in order to gain insights into the predictability and intercomparability of the two methods. The deposited doses following inhalation were lower than the instilled doses. Both types of carbon nanotube induced pulmonary neutrophil influx using both exposure methods. This influx correlated with deposited surface area across MWCNT types and means of exposure at two different time points, 1-3 days and 28-30 days post-exposure. Increased levels of DNA damage were observed across doses and time points for both exposure methods, but no dose-response relationship was observed. Intratracheal instillation of NM-401 induced fibrosis at the highest dose while lower lung deposited doses obtained by inhalation did not induce such lung pathology. No fibrosis was observed following NM-403 exposure. When the deposited dose was taken into account, sub-acute inhalation and a single instillation of NM-401 and NM-403 produced very similar inflammation and DNA damage responses. Our data suggest that the dose-dependent inflammatory responses observed after intratracheal instillation and inhalation of MWCNTs are similar and were predicted by the deposited surface area.


Assuntos
Pneumopatias/induzido quimicamente , Nanotubos de Carbono/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Vias de Administração de Medicamentos , Exposição por Inalação , Ratos , Ratos Sprague-Dawley
9.
Toxicol Appl Pharmacol ; 356: 54-64, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012374

RESUMO

The number of workers potentially exposed to nanoparticles (NPs) during industrial processes is increasing, although the toxicological properties of these compounds still need to be fully characterized. As NPs may be aerosolized during industrial processes, inhalation represents their main route of occupational exposure. Here, the short- and long-term pulmonary toxicological properties of titanium dioxide were studied, using conventional and molecular toxicological approaches. Fischer 344 rats were exposed to 10 mg/m3 of a TiO2 nanostructured aerosol (NSA) by nose-only inhalation for 6 h/day, 5 days/week for 4 weeks. Lung samples were collected up to 180 post-exposure days. Biochemical and cytological analyses of bronchoalveolar lavage (BAL) showed a strong inflammatory response up to 3 post-exposure days, which decreased overtime. In addition, gene expression profiling revealed overexpression of genes involved in inflammation that was maintained 6 months after the end of exposure (long-term response). Genes involved in oxidative stress and vascular changes were also up-regulated. Long-term response was characterized by persistent altered expression of a number of genes up to 180 post-exposure days, despite the absence of significant histopathological changes. The physiopathological consequences of these changes are not fully understood, but they should raise concerns about the long-term pulmonary effects of inhaled biopersistent NPs such as TiO2.


Assuntos
Perfilação da Expressão Gênica , Pulmão/patologia , Nanoestruturas/toxicidade , Titânio/toxicidade , Aerossóis , Animais , Vasos Sanguíneos/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar , Regulação da Expressão Gênica/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Linfonodos/patologia , Masculino , Análise em Microsséries , Estresse Oxidativo/genética , Ratos , Ratos Endogâmicos F344 , Titânio/administração & dosagem
10.
Oncotarget ; 9(43): 27197-27219, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29930759

RESUMO

Glioblastoma is a highly heterogeneous brain tumor. The presence of cancer cells with stem-like and tumor initiation/propagation properties contributes to poor prognosis. Glioblastoma cancer stem-like cells (GSC) reside in hypoxic and acidic niches favoring cell quiescence and drug resistance. A high throughput screening recently identified the laxative Bisacodyl as a cytotoxic compound targeting quiescent GSC placed in acidic microenvironments. Bisacodyl activity requires its hydrolysis into DDPM, its pharmacologically active derivative. Bisacodyl was further shown to induce tumor shrinking and increase survival in in vivo glioblastoma models. Here we explored the cellular mechanism underlying Bisacodyl cytotoxic effects using quiescent GSC in an acidic microenvironment and GSC-derived 3D macro-spheres. These spheres mimic many aspects of glioblastoma tumors in vivo, including hypoxic/acidic areas containing quiescent cells. Phosphokinase protein arrays combined with pharmacological and genetic modulation of signaling pathways point to the WNK1 serine/threonine protein kinase as a mediator of Bisacodyl cytotoxic effect in both cell models. WNK1 partners including the Akt and SGK1 protein kinases and NBC-family Na+/HCO3- cotransporters were shown to participate in the compound's effect on GSC. Overall, our findings uncover novel potential therapeutic targets for combatting glioblastoma which is presently an incurable disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...